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Abstract
The mixing rules for the permittivity and permeability of composites are
known to depend greatly on the microscopic structure of the composite. This
dependence can be quantified in terms of Bergman’s spectral function. In this
paper, the spectral function of actual magnetic composites is reconstructed from
their measured microwave constitutive parameters.

The samples under study are composed of carbonyl iron or Fe–Cr–Al alloy
powders embedded in a paraffin wax matrix. The permittivity and permeability
of the samples is measured in the 0.1–10 GHz frequency band. The proposed
approach to process the measured data allows the spectral function of the
composite and frequency dependence of intrinsic permeability of inclusions
to be derived. The obtained results are in agreement with available tabulated
data.

1. Introduction

The key problem in the physics of composites is how to determine their average, or effective
properties [1]. For this purpose, a number of approximate equations, usually referred to as
the mixing rules, are known. The mixing rules allow the susceptibilities of a mixture to
be predicted based on the data of the individual properties and the volume fraction of the
constituents and these rules have the same form for all transport properties such as thermal or
electrical conductivity, diffusion coefficient etc [2, 3]. This paper deals with the microwave
constitutive parameters, the permittivity ε and the permeability µ, of an asymmetrical mixture,
where discrete inclusions are embedded in a matrix with different properties. The mixing
rules conventionally used for such cases include the Maxwell dilute limit formula [4], the
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Maxwell Garnett mixing rule [5], Bruggeman’s effective medium approximation (EMA) [6],
the differential EMA (see, e.g., [7]), McLachlan’s generalized effective medium theory [8] etc.
Extensive lists of known mixing rules are given, e.g., in [8, 9].

The reliability of a mixing rule is conventionally determined by examining the static
permittivity or permeability as a function of the volume fraction of inclusions. However,
the effective parameters of actual composites are dependent not only on the concentration of
inclusions but also on their distribution, i.e., on the microstructure of the composite. Because
of this, for example, composites containing conducting inclusions of spherical shape may
exhibit the percolation transition at volume concentrations anywhere between 5 and 50% [10],
depending on the particle size distribution,mixing technology and physico-chemical properties
of the inclusions and matrix. Due to various microstructures, the effective constitutive
parameters of a composite at a certain volume fraction of inclusions can have values within a
rather wide range bounded by the Wiener limits [11]. Every known mixture rule corresponds
to a particular microstructure of the composite and therefore describes adequately only that
particular mixture.

Another approach to check the validity of mixing rules involves the examination of the
frequency dependence of the permittivity and/or permeability of a composite. The advantage
is that a sample of fixed concentration is under study and, therefore, possible variations of the
microstructure with concentration need not be considered, unlike the case of examining the
concentration dependence.

This approach is not universal. Its application is possible if

(a) the frequency dispersion of the constitutive parameters of both the inclusions and the
matrix is known and

(b) a pronounced frequency dispersion of the constitutive parameters of the composite occurs
within the measured frequency range.

When the permittivity of a metal–dielectric mixture is the property under consideration,
the first of these requirements is typically met. Most dielectrics and metals are characterized
by the frequency independent permittivity or conductivity, respectively, at least up to the far IR
range. But the location of the dispersive region depends strongly on the shape and conductivity
of the inclusions [12]. Hence the experimental observation of the frequency dispersion of the
permittivity is not an easy task in many occasions.

The situation is the opposite in the case of microwave effective permeability. The intrinsic
permeability of most magnetics is greatly dispersive at microwaves due to the ferromagnetic
resonance and the domain walls motion. In addition, eddy currents affect the intrinsic
permeability of conducting particles. Because of this, magnetic composites exhibit a variety
of types of microwave frequency dispersion, which can be exploited to validate the mixing
rules.

On the other hand, the intrinsic permeability is not determined solely by the composition
of the inclusions and depends strongly on the structure and the method of production of these
inclusions. That is why the magnetic properties of thin powders and bulk material of the
same composition vary greatly for many materials, and the permeability values of magnetic
inclusions in composites should not be taken for granted.

It might seem that studying the constitutive parameters of diluted composites can readily
solve this problem. The cooperative effects are negligible in these, and the permeability of
inclusions can be extracted from the experimental data on the effective permeability using
the dilute limit mixing rule. After that, the frequency dependence of permeability obtained
can be used to calculate the effective permeability at high concentrations of the inclusions.
However, in many practical occasions the effect of composite microstructure is essential
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even in dilute mixtures. This is evidenced, for example, by the experimental data on the
composites consisting of paraffin wax matrix and carbonyl iron powder [13]. The shape of
carbonyl iron particles is well known to be almost spherical. In the dilute limit, the effective
permittivity is a linear function of the concentration p, εe/εh = 1 + p/k, where εh is the host
permittivity and k = 1/3 for spherical inclusions. The measured dependence [13] is linear
as well but the fitted value of k is 0.15. The same result of k = 0.13–0.18 has been obtained
for composites filled with carbonyl iron in the present study, see section 3 for details. The
breakdown of the dilute limit can only be explained by the formation of aggregates of iron
particles, which dramatically enhance the effective permittivity. This might be the reason why
archived data on the microwave intrinsic permeability of ferromagnetic metal powders are
rarely available.

Thus the microstructure is essential in analysing the experimental data on the constitutive
parameters. The relation between the constitutive parameters of a composite and its
microstructure involves the correlation functions of all orders for the spatial distribution of
inclusions in the matrix [14], which is hard to find from the experiment. There is an alternative
approach to account for the microstructure that is provided by the theory developed by Bergman
and Milton [2, 3, 14–19]. The theory treats the general analytical properties of constitutive
parameters of a mixture. A universal characteristic of the microstructure is the spectral function
that represents a normalized constitutive parameter of the mixture as a function of that of
the components. The same spectral function governs all transport properties including both
permittivity and permeability and depends only on the microgeometry, i.e., on the shape of
the inclusions and their spread in size and location. The theory is valid for all concentrations,
including those above the percolation threshold.

It is problem of great interest to determine the spectral function of actual composites. This
function can be used for the analysis of the microscopic structure of the composites or for the
correction of mixing rules. However, as is shown below, this problem is hard to solve. That is
why experimental attempts to obtain the spectral function of actual composites from measured
data are rare [20, 21]. In these papers, the IR frequency dependence of the reflectance was
exploited for reconstructing the spectral function. The concept of spectral function was also
used to improve the mixing rule describing the experimental conductivity of porous rocks
saturated with a conducting brine [18].

In the present paper, the Bergman–Milton theory is used to reconstruct the spectral function
of actual magnetic composites and the intrinsic permeability of magnetic metal inclusions
based on the experimental data on microwave constitutive parameters of the composite. The
composites under study are two-component mixtures consisting of paraffin wax and metal
powders, namely carbonyl iron or Fe–Cr–Al alloy. The volume fraction of powders is in the
range of 1–55%. The permittivity and permeability are measured with the use of short circuit
and open circuit coaxial cells. The details of the measurement technique and experimental
data will be published elsewhere. The aim of this paper is to reveal the possibility of obtaining
the frequency dependence of microwave permeability of magnetic powders and the spectral
function of composites from the measured effective constitutive parameters.

The paper is organized as follows. The first section summarizes the general properties of
the spectral function, which are essential in further discussion. In particular, these properties
are considered more closely for the case of a characteristic spectral function with a continuous
pole distribution, which is the most closely related to the properties of actual composites.
The second section describes the model used to extract the frequency dependence of the
permeability of inclusions and the spectral function of the composite from the experimental
data. In the third section, the results obtained are presented and discussed. In the conclusion,
possible ways to refine the obtained data are sketched.
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2. The Bergman–Milton theory of composites

This section contains a summary of the Bergman–Milton theory of composites [14–19]. In
this theory, the same formalism is applied to the description of all transport parameters of
the composite. In this section, for the sake of definiteness, the permittivity of composites is
treated.

The basic concept of the Bergman–Milton theory is the characteristic geometrical function,
which is usually referred to as the spectral function in recent literature. In the case of a two-
component composite the spectral function relates the permittivity of a mixture to the ratio
of the permittivity of inclusions to that of the matrix. This function depends only on the
microstructure of the composite [15]. It can be defined in several alternative ways, the most
conventional definition,

F(s) = 1 − εe

εh
, s = 1

1 − εi/εh
(1)

being used in this paper. In equation (1), the subscripts e, i and h relate respectively to the
effective medium (mixture), inclusions and host (matrix). For perfectly conducting inclusions,
s = 0.

In the static case, s is located at the real axis. When the frequency dependence is under
treatment, the spectral function must be regarded as a function of the complex argument. It has
simple analytical properties [15]. If inclusions are of ellipsoidal shape, the spectral function
of a composite sample of a finite size has a finite number of poles. All the poles are located
between zero and unity, the residues of these being real positive quantities less than unity.
Therefore, the spectral function can be written as a series:

F(s) =
N∑

n=0

Bn

s − sn
, 0 < Bn < 1, 0 � sn < 1. (2)

The interval 0 � s < 1, where all the poles are located, corresponds to the negative values of
the permittivity of inclusions εi provided that εh is positive. The exact locations and residues
of the poles depend on the microstructure of the sample. The only limitation on these values
is due to the following two sum rules [15], that hold for any volume fraction of inclusions p:

N∑
n=0

Bn = p,

N∑
n=0

sn Bn = p(1 − p)

D
. (3)

In (3), D is the dimensionality of the sample, being equal to two for planar structures and
three for bulk composites. The first of equations (3) is valid for any composite; the second one
governs isotropic mixtures only.

Following the paper [16], the relation between the pole pattern of the spectral function
and the microstructure of the composite is considered more closely here. A simple example of
a composite is a diluted mixture of non-interacting ellipsoidal inclusions with identical shape
and orientation. This case is described by the Maxwell dilute limit mixing rule, that can be
transformed to the spectral function as

F(s) = p

s − L
, (4)

where L is the depolarization factor of the inclusions along the external field. The spectral
function (4) has a single pole at s = L, with the residue equal to the concentration of the
inclusions, B0 = p.

With this in mind, the series representation (2) of the spectral function can be interpreted
as the mixing rule for a hypothetical system of non-interacting ellipsoidal inclusions, with
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depolarization factors Ln and the volume fractions Bn. Note that the poles of spectral function
are actually related not only to the shape of inclusions but also to the interaction between
inclusions.

Another example of the spectral function having a single pole is provided by the Maxwell
Garnett mixing rule that is valid for any concentration of identical, spherically shaped and
equally spaced inclusions in a composite. It is the Maxwell Garnet mixing rule that follows
from the assumptions that the spectral function of an isotropic three-dimensional (D = 3)
medium has a single pole. The related spectral function is readily produced by the solution
of (3) as

F(s) = p

s − (1 − p)/3
. (5)

The comparison of (4) and (5) shows that the additional factor (1 − p) appears in the latter
equation. This factor accounts for the dipole interaction between inclusions. The pole
s0 = (1 − p)/3 relates to the famous Lorentz dielectric catastrophe [4], where both the local
electric fields and the effective permittivity tend to infinity. All modifications of the Maxwell
Garnett mixing formula, such as the Odelevski formula [22], correspond to a single-pole
approximation of the spectral function.

The origin of multiple poles in the spectral function is examined in [15]. These are
shown to be related to either the variety of shapes of inclusions or strong interaction between
neighbouring inclusions, when higher order modes of the electric field are excited. If the
interaction is weak, then only the eigenmode is excited. If, in addition, the inclusions are
ellipsoidal in shape and indistinguishable, then the spectral function has a single pole as
in (4), (5). If the interaction is weak but the inclusions are differently shaped or oriented, then
the distribution of poles represents the spread in the shape of inclusions along the external field.
In non-ellipsoidal inclusions, a multitude of poles also appears. The pole distribution in the
spectral function is the most complicated when the concentration of inclusions is so high that a
clustered structure appears. Then the total number of poles is approximately the product of the
number of excited modes and the number of inclusions. The percolation threshold corresponds
to the spectral function with the least pole location equal to zero [15], as the permittivity of a
mixture filled with metal inclusions tends to infinity at the threshold.

It is of interest to regard the EMA mixing rule in terms of the Bergman–Milton theory. It
might seem that Bruggeman’s formula [6] contradicts the theory since its spectral function is
given by

F E M A(s) ≡ 1 − εE M A
e

εh
= 1 − 1

4


(1 − 3 p)

1

s
+ 1 ∓

√(
(1 − 3 p)

1

s
+ 1

)2

+ 8

(
1 − 1

s

) 
 .

(6)

Equation (6) produces no poles at any concentration of inclusions below the percolation
threshold, p = 1/3. However, the EMA mixing rule is shown [15] to correspond to the
spectral function having a continuous distribution of poles with the singularities merging in a
branch cut. The branch cut is located within the [0,1) range of the argument s, and the left
branch point is zero at the percolation threshold in agreement with the Bergman theory.

As mentioned above, in actual composites a multitude of poles can be observed as a rule.
In this case, the analysis can be simplified by substituting the exact discrete distribution of
poles by a continuous distribution corresponding to a branch cut at the complex plane of s,
similarly to the spectral function of EMA [6]. The properties of the spectral function with
the continuous distribution of poles [14, 18] are analogous to those of the discrete spectral
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Figure 1. The spectral function for Dykhne’s equation [20]. The solid curve shows the real part;
the dashed curve shows the imaginary part.

function. For the continuous case, (2) transforms to

F(s) =
∫ 1

0

B(x)

s − x
dx, B(x) � 0. (7)

Since the integral in (7) is defined for the values of s located beyond the branch cut only, it is
reasonable to define F(s) at the branch cut as F(s − i0).

Similarly, sum rules (3) transform to∫ 1

0
B(x) dx = p,

∫ 1

0
x B(x) dx = p(1 − p)

D
. (8)

As in the discrete case, the first equation in (8) holds for any composite and the second one
is valid for an isotropic mixture only. The physical meaning of the spectral function with the
continuous pole distribution differs from that of the case when the distribution is discrete [15].
Namely, the function F(s) given by (7) is representative of a set of composites, which are
macroscopically identical but different in the microgeometry. Therefore, B(x) in (7) relates
to the weighted density of poles within the range (x, x + dx).

A feature of spectral functions with the continuous pole distribution is that the imaginary
part of these is proportional to the density of the pole distribution,

Im F(s − i0) = π B(s). (9)

To illustrate the features of the spectral function with the continuous pole distribution, we
calculate the spectral function for two examples of heterogeneous medium models, the EMA
model and Dykhne’s theory [23]. Dykhne’s equation provides an exact description of a
two-dimensional isotropic structure at the percolation threshold, p = 1/2, and is written
as εe = √

εiεh , which readily transforms to the spectral function given by

F(s) ≡ 1 − εe

εh
= 1 −

√
s − 1

s
. (10)

This function is plotted in figure 1. The branch cut of function (10) is located within the interval
[0,1), the left branching point being equal to zero in agreement with the Bergman theory. The
density of the pole distribution B(x) readily follows from (9) and (10) as

B(x) = 1

π

√
1 − x

x
. (11)

The integration of B(s) reveals that both sum rules (8) hold at p = 1/2 and D = 2.
In figure 2, the calculated EMA spectral functions (6) are given, with the concentration

of inclusions p = 0.002, 0.02, 0.1 and 0.2. The solid and dashed curves show the real
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Figure 2. The spectral functions for the EMA model. The concentration of inclusions p is
(a) p = 0.002, (b) p = 0.02, (c) p = 0.1 and (d) p = 0.2. The solid curve shows the real part; the
dashed curve shows the imaginary part.

and imaginary parts of F(s), respectively. According to (9), the imaginary part of F(s) is
proportional to the density of the pole distribution B(x). It is seen from the figure that the
EMA spectral function looks like the single-pole spectral function (4) only at very low p. The
spread in the pole density distribution, which is evidence for the cluster formation, is clearly
seen at as low a concentration as p = 0.02. With p tending to the percolation threshold, the
left branching point tends to zero and the right branching point tends to unity. The numerical
study reveals that that sum rules (8) hold at p < 1/3. At p > 1/3, the width of the branch cut
decreases with the concentration but an additional isolated pole at s = 0 appears. If this pole
is taken into account, the sum rules hold as well.

3. The approach to extract the intrinsic properties from the measured data

The purpose of this paper is to show the possibility of obtaining the frequency dependence of
microwave permeability of magnetic powders and the spectral function of composites from
the measured effective constitutive parameters. The solution for the problem implies that two
functional dependences, the permeability as a function of frequency and the spectral function
as a function of normalized permeability of inclusions, should be found from a single one, the
frequency dependence of the effective permeability of the composite.

Thus the formulated problem is obviously ill defined and a definite solution can be found
only in some particular cases. For example, suppose that the pole distribution in the spectral
function is very narrow, as it is in the Maxwell Garnett mixing rule. As seen from the above
consideration, the frequency dependence of the intrinsic permeability is readily reconstructed
from the measured effective permeability. However, this analysis produces no data on the
details of the pole density function.

The opposite case occurs when the intrinsic permeability exhibits a high quality factor
resonance. This occasion is illustrated by figure 3, where the calculated frequency dependence
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Figure 3. The frequency dependence of permeability for two hypothetical mixtures with
concentrations of inclusions p = 0.2: (a) the EMA, for the spectral function see figure 2(d);
(b) the model of trapezium-like form of the pole distribution with s0 = 0.1, s1 = 0.7, a = 0.5, for
the spectral function see figure 4(c). The intrinsic permeability of inclusions is given by (14) with
f0 = 1 GHz, S = 60 GHz and α = 0.01. The solid curve shows the real part; the dashed curve
shows the imaginary part.

Figure 4. The linear-piecewise trapezium-like spectral function with the continuous pole
distribution, see (12), (13), at s0 = 0.1, s1 = 0.7 and different values of a: (a) a = 0, (b) a = 1,
(c) a = 0.5 and (d) a = 0.8. The solid curve shows the real part; the dashed curve shows the
imaginary part.

of permeability is presented for two hypothetical mixtures having the same volume fraction,
p = 0.2, but different spectral functions, namely, the EMA spectral function and a rectangle-
like pole distribution function, which is defined by (12), (13) and shown in figure 4(c). In
both the cases, the intrinsic permeability is assumed to be governed by the Landau–Lifshitz
equation, see (14), with f0 = 1 GHz, S = 60 GHz and α = 0.01. The comparison of the
spectral functions shown in figures 2(a) and 4(c) with the dependences given in figure 3 reveals
that the form of the frequency dependences of the effective permeability is very close to the
related spectral function.

The reason is that for a high quality resonance of the permeability the argument of
the spectral function, s = 1/(1 − µ( f )), depends linearly on f and at frequencies above
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the resonance possesses a negative real part and negligible imaginary part. Hence at these
frequencies s is located in the close vicinity of poles of F(s) and the frequency dependence of
the permeability replicates the shape of the spectral function. Then the latter can be extracted
with high accuracy from the measured effective permeability. But no refinement of the data
on the intrinsic permeability near resonance can be obtained in this case, of course.

To make the problem more definite, additional data on the intrinsic properties of the
composite must be introduced. For this purpose, both the data on permeability and permittivity
of the composite are processed simultaneously in this study. This provides some additional
data, as the effective permittivity and permeability are governed by the same spectral function.
However, the microwave permittivity of conducting inclusions is very high, and only the
value of the spectral function at s = 0 can be extracted from the effective permittivity of the
composite. In addition, the experimental data processing involves simultaneous treatment of
data on composites with different volume fractions of the same inclusions. For these data, the
intrinsic permeability is the same, which allows the uncertainty in the results to be diminished.

To obtain further reduction of the uncertainty, a simplified model of the intrinsic properties
of composites is accepted. Both the frequency dependence the of permeability and the spectral
function were approximated by some probe functions, which depend on a few real parameters
that must be varied to obtain the best fit of the experimental data. This reduces the problem
of two unknown functional dependences to a finite number of unknown parameters, which
provide a reasonable fit of these functions. Note that the use of known mixing rules to obtain
the probe function for F(s) is not a good idea, as most of these allow no variations in the form
of spectral function, which may be quite different from that of actual composites.

We use the probe function for F(s) that corresponds to a linear-piecewise trapezium-
like form of B(x) represented by a sum of two triangle-like functions with the same base but
opposite slopes, see figure 4. This allows us to define a wide range of branching point locations
and of shapes of pole density distribution by varying as few as three parameters. The related
spectral function is obtained by substituting the trapezium-like function B(x) into (7) and by
accounting for the first equation (8), that yields

F(s) = (aG(s, s0, s1) + (1 − a)G(s, s1, s0))p, (12)

where s0, s1 are the left and right branching points, a is the weight factor determining the form
of the function B(s), p is the volume fraction of inclusions and G is given by

G(s, sk , sl) = 2
sk − sl + (sk − s) ln

( s−sk
s−sl

)
(sk − sl)2

. (13)

In (13), the logarithm is regarded as a complex function. The values of s0, s1 and a are limited
by inequalities 0 � s0 � s1 < 1, 0 � a � 1. Notice that if s is within the interval (s0, s1),
then (s − s0)/(s − s1) < 0 and the function (11) has an imaginary part, see figure 4.

The probe function for the frequency dependence of the intrinsic permeability is based on
the Landau–Lifshitz equation. If the particles are of spherical shape and Snoek’s law is taken
into account, then this equation leads to the frequency dependence of the susceptibility given
by [24, 25]

χ0( f, f0, α) = 1

4π

S

f0

1 + iα f/ f0 + α2

1 − ( f/ f0 − iα)2
, (14)

with Snoek’s constant S = γ 4π Ms , the saturation magnetization 4π Ms , the gyromagnetic
ratio γ = 2.8 GHz kOe−1, the resonance frequency f0, the operating frequency f and the
Gilbert damping factor α. For pure iron, Ms = 1700 G and hence S ∼= 60 GHz. The
additional averaging factor 2/3 should be introduced for polycrystalline particles [24], giving
S ∼= 40 GHz.
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As the ferromagnetic powders under study are highly permeable polycrystalline magnetics,
strong coupling between the granules in the powder particles must occur. In this case the
magnetic properties of inclusions are described by a continuous distribution of ferromagnetic
resonance frequencies, each resonance relating to a resonant mode of the cluster as a whole
rather than to a mode of an isolated crystallite [24]. For the sake of simplicity, a rectangular
distribution function of the resonance is accepted in this study:

µi ( f ) = 1 +
4π

F1 − F0

∫ F1

F0

χ0( f, f0, α) d f0. (15)

The values of damping factor α are assumed to be the same for all resonances.
As the powders under study are conducting, it is also necessary to take into account the

effect of the eddy current on the intrinsic permeability. The composites with concentration well
below the percolation threshold are involved in this study. Therefore, the collective skin effect
is negligible. The skin effect at individual inclusions is accounted for by the renormalization
of the intrinsic permeability of spherical inclusions using Lewin’s formula [26]:

µ̃i = µi C(2π(1 − i)r/δ),

C(z) = 2
sin z − z cos z

(z2 − 1) sin z + z cos z

(16)

where f is the frequency, GHz, r is the mean radius of inclusion and δ is the skin depth. To
characterize the skin effect at the inclusions, it is convenient to introduce the value θ that is the
ratio of the average radius of inclusions, r , to the skin depth of the non-magnetic conducting
inclusion at 1 GHz.

Thus the model used in this study is dependent on the parameters S, F0, F1, α and θ

determining the intrinsic permeability of the inclusions, and s0, s1 and a determining the
spectral function of the composite. As the data on two concentrations of the inclusions are
processed simultaneously, two different spectral functions are involved in each calculation
with the result of a total of 11 independent parameters. These parameters are varied to obtain
numerically the least mean squares fit of the experimental data on the measured low frequency
permittivity and microwave permeability of the composites by the above model.

A standard minimization routine was used for this purpose. Note that in the mathematical
meaning the problem described above is still not well conditioned. Because of this, and
also due to the presence of measurement uncertainty, the square root difference as a function
of the varied parameters has a wide minimum with a noticeable ripple. This leads to the
uncertainty in the results of the minimization, which may be rather different when the routine
starts from different initial points. This discrepancy can be used for determining the accuracy
of the obtained values of intrinsic permeability and the spectral function. To do this, the
fitting procedure is started 20 times from different starting points. Among the results of this
procedure, only those of which the resulting relative square root difference does not exceed
15%, i.e., those satisfying the conventional goodness-of-fit test χ2 � n [27], where n is the
number of degrees of freedom, are retained. The average of these results produces the most
probable values of the parameters, while the rms of these yields the accuracy.

4. Results and discussion

The composite samples consist of magnetic powders embedded into paraffin wax matrix. Two
types of powder, carbonyl iron and 13.6 at.% Cr–6 at.% Al–80.4 at.% Fe alloy, are examined
in this study. The mean size of the powder particles is about 6 µm for carbonyl iron and about
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Figure 5. The measured microwave permeability of composites filled with carbonyl iron powder
at two concentrations of inclusions p: (a) p = 0.1 and (b) p = 0.4. Crosses denote the real part
and circles denote the imaginary part of measured permeability. The curves are the fit with the
model used.

60 µm for the alloy. The volume fraction of the powder in composite samples is within 1–55%,
the precise values being obtained by the measurement of density.

The microwave effective permittivity and permeability values of the samples are obtained
in the 0.1–10 GHz frequency range from the measured complex reflection coefficient. At
frequencies below 2.5 GHz, the measurement is made with open-circuit and short-circuit 50 �

coaxial measuring units. Both the units are 3.04 mm in the diameter of the inner conductor,
7.00 mm in the diameter of the outer conductor and 50 mm in length. For higher frequencies,
the measurement is made with the short-circuit unit alone, coaxial dielectric inserts of 5, 10 or
20 mm in height being placed onto its bottom. The relative measurement uncertainty in both
permittivity and permeability varies from 5% in the 0.1–5 GHz range to 15% at 10 GHz. To
eliminate the effect of gaps between the sample and the conductors on the measured parameters,
the die-pressed samples are heated and pressed directly in the units. A typical result of the
measurement and the result of data processing with the above model is shown in figure 5.

Figure 6 illustrates the importance of accounting for the microstructure of the composites
under study. In the figure, the plot is shown of the measured volume fraction dependence
of low frequency permittivity and permeability for the composites filled with carbonyl iron
powder. The dependences are approximately linear, εe/εh = 1 + p/k and µe = 1 + p/k,
at p < 0.1 with the slope k = 0.18 for both dependences. This value is less than half that
predicted for spherical inclusions by the Maxwell dilute limit, k = 1/3. This is evidence of
the fact that the clusters of iron inclusions affect the properties of the mixture even when the
volume fraction of the inclusions is as low as 1%. Therefore, to describe these mixtures it is
necessary to introduce the spectral function.

The processing of the measured data is made with the volume fraction of inclusions being
10 and 40% for carbonyl iron and 15 and 37% for Fe–Cr–Al-alloy. All these composites
are below the percolation threshold. The values of the parameters introduced in the previous
section and the standard deviation of these are given in tables 1–3.

It is seen from the tables that the mixtures of identical concentration with carbonyl iron and
with Fe–Cr–Al alloy have quite different spectral functions. For example, for the composite
filled with 37% of alloy, the lower branching point is 100 times less than that for the carbonyl
iron at p = 0.4. To understand this difference, notice that the particles of carbonyl iron include



9518 A V Osipov et al

Figure 6. The measured volume fraction dependence of normalized low frequency permittivity,
εe/εh − 1 (boxes), and permeability, µe − 1 (triangles), for composites filled with carbonyl iron
powder. The dashed line corresponds to the Maxwell dilute limit (4) for metal spherical inclusions
(L = 1/3); the solid line corresponds to L = 0.18.

Table 1. The results for the intrinsic permeability and skin effect of materials under study.

Material S (GHz) F0 (GHz) F1 (GHz) α θ

Carbonyl iron 57 ± 3 0 0.28 ± 0.2 2 ± 1 0.3 ± 0.2
Fe–Cr–Al alloy 33 ± 5 (1.2 ± 0.7) × 10−5 (5 ± 4) × 10−3 0.4 ± 0.2 1.6 ± 0.3

Table 2. Parameters of the spectral function for composites filled with carbonyl iron at different
concentrations.

p s0 s1 a

0.05 0.01 ± 0.003 0.5 ± 0.05 0.2 ± 0.1
0.10 0.015 ± 0.004 0.56 ± 0.06 0.4 ± 0.1
0.15 0.01 ± 0.003 0.55 ± 0.05 0.3 ± 0.1
0.40 0.01 ± 0.002 0.5 ± 0.05 0.15 ± 0.08

Table 3. Parameters of the spectral function for composites filled with Fe–Cr–Al alloy at different
concentrations.

p s0 s1 a

0.15 0.005 ± 0.001 0.6 ± 0.03 0.5 ± 0.07
0.37 0.000 25 ± 0.000 04 0.7 ± 0.07 0.2 ± 0.1

a flocculent oxide shell of about 0.1 µm in thickness [28], while the oxide film at the surface
of alloy particles is much thinner. Due to that, the least distance that is possible between metal
cores of Fe–Cr–Al particles is much less than that of the carbonyl iron particles. Therefore,
the composite filled with the alloy particles at p = 0.37 appears to be much closer to the
percolation threshold than the composite filled with the carbonyl iron at p = 0.4.

Figures 7–10 show the data on the intrinsic permeability of the inclusions and the spectral
functions for some of the composites under study. It is seen from the figures that although the
uncertainty in the parameters of the model is rather large, the obtained frequency dependences
of intrinsic permeability and the spectral function of composites seem to be definite enough.
The spectral functions shown in figures 9 and 10 are determined with higher accuracy than the
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Figure 7. The average values (triangles) and the standard deviation of reconstructed intrinsic
permeability of carbonyl iron.

Figure 8. The average values (triangles) and the standard deviation of reconstructed intrinsic
permeability of FeCrAl (13.6 at.% Cr–6 at.% Al–80.4 at.% Fe) alloy.

frequency dependences of intrinsic permeability shown in figures 7 and 8. The permeability
dispersion curve of carbonyl iron, see figure 7, is of relaxation type. The curve obtained for the
alloy (figure 8) exhibits typical resonance features. The triangle-like form of imaginary parts
of the spectral function is more pronounced at high concentrations of inclusions than at lower
p. This can be attributed to the larger relative amount of ‘long’ clusters at high concentrations,
i.e., those related to the poles located at low s.

Obtained frequency dependences of intrinsic permeability for both the magnetic powders
exhibit the magnetic absorption maximum at very low frequencies. Because of that, the
observed magnetic spectra can be attributed to the domain wall motion rather than to
ferromagnetic resonance. However, the magnetic spectra related to the domain walls are
described adequately by the model discussed in the previous section. Indeed, in this case
Snoek’s law is also valid [24] and the frequency dependence of the permeability has the same
form (14) as for the ferromagnetic resonance [29].

The results of the study are validated by the comparison of the values of the parameters
given in table 1 with those obtained by independent estimation. Snoek’s constant S of carbonyl
iron obtained in this study as 50–60 GHz is in close agreement with the theoretical value of
40 GHz typical for pure iron. The average skinning parameter θ , that is 0.3 for carbonyl iron
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Figure 9. The average values (triangles) and the standard deviation of reconstructed spectral
functions for the investigated composites filled with carbonyl iron powder at different concentrations
p: (a) the real part and (b) the imaginary part of F(s) for p = 0.1; (c) the real part and (d) the
imaginary part of F(s) for p = 0.4.

and 1.6 for the alloy, also correlates well with the theoretical values. The theoretical estimate
for θ is θ = 0.27 for carbonyl iron with the conductivity 2 × 106 S m−1 and the mean radius
a = 3 µm and θ = 1.7 for the alloy with the conductivity 7.7 × 105 S m−1 and a = 30 µm.
This confirms the validity of the model used.

It is of interest to discuss the values of the damping factor α obtained in this study. As
follows from table 1, the value of α for carbonyl iron is much larger than that of Fe–Cr–Al
alloy. This can be attributed to the fact that carbonyl iron possesses an onion-like structure. In
the treatment of the magnetic properties of an iron particle this structure can be allowed for by
introducing the effective porosity of the particle [30]. As shown in [30], the porosity results
in broadening the ferromagnetic resonance line, that can be approximately evaluated as

	H ∼= 1.5(4π Ms)
p0

1 + p0
, (17)

where p0 is the volume concentration of pores. The carbonyl iron is known to contain
approximately 1% of carbon interlayers [28]. Then, as Ms = 1700 G for pure iron, (17)
yields 	H = 320 Oe. From this value, the relaxation time τ = (γ	H/2)−1 is estimated as
3.6 × 10−10 s and the damping factor α = 1/(2π f0τ ) as α ∼= 3 on the assumption that the
average resonance frequency is f0 = 0.15 GHz. This value agrees with the results of this
study. The Fe–Cr–Al alloy is manufactured by melting. Hence its particles should be more
homogeneous and the value of damping factor should be less,as follows from the data obtained.
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Figure 10. The average values (triangles) and the standard deviations of reconstructed spectral
functions for the investigated composites filled with FeCrAl (13.6 at.% Cr–6 at.% Al–80.4 at.%
Fe) alloy powder at different concentrations p: (a) the real part and (b) the imaginary part of F(s)
for p = 0.15; (c) the real part and (d) the imaginary part of F(s) for p = 0.37.

5. Conclusion

The obtained results reveal that the measured frequency dependence of microwave permeability
of composites filled with magnetic powder provides enough data to estimate both intrinsic
permeability of the inclusions and the spectral function of the composite. In this paper,
composites filled with carbonyl iron and Fe–Cr–Al alloy powders are under study. Data
on the spectral function of actual composites are obtained. The results are in agreement with
available tabulated data.

The uncertainty in the obtained data is rather high. The main reason is that the problem
is ill conditioned from the mathematical standpoint. To reduce the uncertainty, certain
simplifications of the model are introduced, which allow the model to be more definite. On
the other hand, these simplifications also enhance the uncertainty, and the total accuracy of the
obtained data is as low as about 30%.

To improve the accuracy and obtain further validation of the results, more data are needed
in the data processing. A promising approach is to process the measured data on the permittivity
and permeability together with the data on other transport properties of the sample such as heat
conductivity, etc. As all the transport properties are governed by the same spectral function,
this would increase the number of data involved in the computation and thus diminish the
uncertainty.
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More validation of the results could be obtained by adding the data provided by direct
techniques for examining the structure of composites, e.g., by microscopic determination of
the particle distribution. Technological means for producing the samples with the prescribed
microstructure can also be useful.

Certain development of the approach is possible with more utilization of the data on
microwave properties of composites. For example, wideband data on the frequency dependence
of complex permittivity could be added. However, in the powder-filled composites under
study the dispersive area is located in the IR region. Introducing these data would require
the application of IR measuring techniques and the account of the frequency dependence
of conductivity of the inclusions. Both these factors increase the uncertainty. The dielectric
dispersion of the powder-filled composites manifests itself at microwaves through the frequency
dependent dielectric loss, with the dielectric loss tangent being very small. The analysis of the
low frequency dielectric dispersion allows the derivative of F(s) at s = 0 to be determined.

Finally, the measurement of the effective permeability under magnetic bias seems to be a
very promising technique to improve the approach described in this paper. This technique is
in some sense complementary to the simultaneous processing of the data related to different
volume fraction of inclusions. Indeed, the biasing field affects the intrinsic permeability with
the spectral function remaining unchanged, while the difference in volume fraction affects the
spectral function and does not influence the intrinsic permeability. The study of the intrinsic
permeability of magnetic powders under biasing field is a powerful tool for understanding the
structure and properties of these powders.

Acknowledgments

The authors are grateful to Professor I T Iakubov and Professor K M Hock for valuable remarks.
The study was partially supported by RFBR, agreements no 01-02-17962 and 00-15-96570.

References

[1] Neelakanta P S 1995 Handbook of Electromagnetic Material (Boca Raton, FL: Chemical Rubber Company
Press)

[2] Bergman D J 1976 Phys. Rev. B 14 1531
[3] Milton G W 1980 Appl. Phys. Lett. 37 300
[4] Landauer R 1978 Electrical Transport and Optical Properties of Inhomogeneous Media (AIP Conf. Proc. No

40 Part 2) ed J C Garland et al (New York: American Institute of Physics) p 2
[5] Maxwell Garnett J C 1904 Phil. Trans. R. Soc. A 203 385
[6] Bruggeman D A G 1935 Ann. Phys., NY 24 636
[7] Sheng P and Calleragi A G 1984 Appl. Phys. Lett. 44 738
[8] McLachlan D S, Priou A, Chenerie I, Isaak E and Henry F 1992 J. Electromagn. Waves Appl. 6 1099
[9] Niklasson G A and Granquist C G 1984 J. Appl. Phys. 55 3382

[10] Miyasaka K, Watanabe K, Jojima E, Aida H, Sumita M and Ishikawa K 1982 J. Mater. Sci. 17 1610
[11] Egu W G and Apsnes D E 1982 Phys. Rev. B 26 5313
[12] Lagarkov A N, Matytsin S M, Rozanov K N and Sarychev A K 1998 J. Appl. Phys. 84 3806
[13] Pitman K C, Lindley M W, Simkin D and Cooper J F 1991 IEE Proc. F 138 223
[14] Milton G W 1981 Appl. Phys. 26 125
[15] Bergman D J 1979 Phys. Rev. B 19 2359
[16] Bergman D J and Dunn K-J 1992 Phys. Rev. B 45-I 13 262
[17] Bergman D J 1986 Homogenization and Effective Moduli of Materials and Media ed J L Ericsen et al (New

York: Springer) p 27
[18] Bergman D J and Stroud D 1992 Solid. State Phys. 46 147
[19] Bergman D J 1978 Phys. Rep. 43 377
[20] Day A R, Grant A R, Sievers A J and Thorpe M F 2000 Phys. Rev. Lett. 84 1978



Reconstruction of intrinsic parameters of a composite 9523

[21] Hornfeck M, Theiss W and Clasen R 1992 J. Non-Cryst. Solids 145 154
[22] Odelevski V I 1951 Sov. Phys.–JETP 21 667
[23] Dykhne A M 1970 Sov. Phys.–JETP 59 110
[24] Soohoo R F 1985 Microwave Magnetics (New York: Harper and Row) p 120
[25] Gurevich A G and Melkov G A 1994 Magnetic Ocsillations and Waves (Moscow: Nauka)
[26] Lewin L 1951 Advanced Theory of Waveguides (London: Illife)
[27] Taylor J R 1962 An Introduction to Error Analysis (Mill Valley: University Science Books)
[28] Volkov V L and Syrkin V G 1969 Carbonyl Iron (Moscow: Metallurgiya)
[29] Bouchaud J P and Zerah P G 1990 J. Appl. Phys. 67 5512
[30] Schloemann E 1957 Proc. 2nd Conf. on Magnetism and Magnetic Materials (Boston, MA, 1956) p T-91


